
Triangle Counting over Signed Graphs with
Differential Privacy

Zening Li, Rong-Hua Li, Fusheng Jin
Beijing Institute of Technology, Beijing, China

zening-li@outlook.com; lironghuabit@126.com; jfs21cn@bit.edu.cn

Abstract—Triangle counting serves as a foundational operator
in graph analysis. Since graph data often contain sensitive infor-
mation about entities, the release of triangle counts poses privacy
concerns. While recent studies have addressed privacy-preserving
triangle counting, they mainly concentrate on unsigned graphs.
In this paper, we investigate a new problem of developing triangle
counting algorithms for signed graphs that adhere to centralized
differential privacy and local differential privacy, respectively.
The inclusion of edge signs and more classes of triangles leads
to increased complexity and overwhelms the statistics with noise.
To overcome these problems, we first propose a novel algorithm
for smooth-sensitivity computation to achieve differential privacy
under the centralized model. In addition, to handle large signed
graphs, we devise a computationally efficient function that calcu-
lates a smooth upper bound on local sensitivity. Finally, we release
the approximate triangle counts after the introduction of Laplace
noise, which is calibrated to the smooth upper bound on local
sensitivity. In the local model, we propose a two-phase framework
tailored for balanced and unbalanced triangle counting. The first
phase utilizes the Generalized Randomized Response mechanism
to perturb data, followed by a novel response mechanism in the
second phase. Extensive experiments conducted over real-world
datasets demonstrate that our proposed methods can achieve an
excellent trade-off between privacy and utility.

I. INTRODUCTION

Many relationships in the real world can be represented by
signed graphs with positive and negative edges, as a result of
which signed graph analysis has attracted much attention and
nurtured numerous applications [1]–[7]. However, most real-
world signed graphs associated with people or human-related
activities, such as social and financial networks, hold sensitive
information about the relationships between individuals. These
positive and negative links reveal details about individual in-
teractions, preferences, and social dynamics. Given the private
nature of such data and the pressure to allow controlled release
of private data, there is a considerable interest in how to release
information with assured privacy.

Differential privacy (DP) [8] has been the dominant model
for the protection of individual privacy from powerful and
realistic attackers. This model works well for data published
as histograms or counts. However, approaches that attempt to
directly output a modified version of the input signed graph
under DP result in the loss of its inherent properties. The major
technical obstacle lies in the fact that the direct application
of perturbation mechanism seems to require extensive random
modifications to the input signed graphs. As an alternative, we
can focus on the release of statistical properties of the signed
graph under differential privacy rather than the signed graph

+

+

+

-

+

+

+

(a)

+

+

+

-

+

+

+
-

(b)

Fig. 1: Illustrations of (a) a financial network and (b) its local
sensitivity at distance of the triangle counting query function.

itself. Triangle counting is a fundamental primitive in signed
graph analysis. A triangle is considered balanced if it contains
an odd number of positive edges and unbalanced otherwise [9]
(refer to Figure 2 for illustration). Statistics based on balanced
and unbalanced triangle counts can reveal important structural
information about signed graphs. It is valuable to publish these
counts, because there are many stochastic signed graph models
which rely on these statistics to construct graphs, such as the
Balanced Signed Chung-Lu model [9] and 2-Layer Signed
Network model [5]. In addition, these statistics also support
various computational tasks in signed graph analysis, such as
link prediction [1] and community detection [4], [10].

The direct release of exact balanced and unbalanced triangle
counts can inadvertently expose sensitive relationship patterns,
posing significant privacy risks. For example, consider a finan-
cial network, as depicted in Figure 1(a), where nodes represent
financial institutions and edges denote lending relationships.
The sign of an edge reflects the transaction’s health: a positive
sign denotes timely repayments, while a negative sign indicates
defaults. Suppose institution v2 knows its own connections and
all links (and their signs) between v3, . . . , v5. If v2 seeks to
infer the relationships between v1 and other nodes, the release
of exact triangle counts (#balanced=2 and #unbalanced=1) can
reveal sensitive information. Specifically, v2 can deduce that v1
and v3 are connected by a positive link, and the node v1 must
be connected to exactly one of v4 or v5, with (v1, v4) being
negative and (v1, v5) being positive. Such disclosures com-
promise the privacy of financial institutions. Thus, developing
privacy-preserving triangle counting algorithms is essential.

Differential privacy is commonly classified into two models
based on its architectural framework: centralized DP and local
DP. In the centralized model, there exists a trusted curator who
holds the sensitive data and releases sanitized versions of the
statistics. In contrast, local DP assumes that the data curator
is untrusted. Under this premise, individual users perturb their

2094

2025 IEEE 41st International Conference on Data Engineering (ICDE)

2375-026X/25/$31.00 ©2025 IEEE
DOI 10.1109/ICDE65448.2025.00159

20
25

 IE
EE

 4
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 D

at
a

En
gi

ne
er

in
g

(IC
DE

) |
 9

79
-8

-3
31

5-
36

03
-9

/2
5/

$3
1.

00
 ©

20
25

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
DE

65
44

8.
20

25
.0

01
59

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 08,2025 at 15:28:12 UTC from IEEE Xplore. Restrictions apply.

data before transmission to the curator. Extensive research has
explored differentially private algorithms for graph analysis
under centralized [11]–[16] and local models [17]–[22]. De-
spite the strides made in this field, the focus has predominantly
been on the unsigned graphs. The exploration of balanced and
unbalanced triangle counting in signed graphs, the focus of this
paper, remains an underexplored area in the current literature.

To fill this gap, we investigate the problem of balanced and
unbalanced triangle counting under centralized DP and local
DP, where both the graph structure and the sign of edges are
considered private information. However, the inclusion of edge
signs introduces unique challenges for privacy preservation. (i)
Noise scale: a standard DP technique directly adds noise to the
statistical estimates. However, as the noise scale is proportional
to the number of nodes, it can cause excessive perturbation to
the release statistics. (ii) Complexity of smooth sensitivity: to
reduce the introduction of noise, we explore the technique of
smooth sensitivity as an alternative. However, the computation
of smooth sensitivity is obviously more complex in signed
graphs. (iii) Scalability: beyond the computational complexity,
the calculation of smooth sensitivity is extremely expensive.

To solve the mentioned issues, we propose several effective
methods under centralized DP and local DP, respectively. In
the centralized model, in order to reduce the introduction of
noise, we adopt the smooth sensitivity framework to calculate
the number of balanced and unbalanced triangles in the signed
graph. More specifically, we first analyze the local sensitivity
and local sensitivity at distance for the triangle counting query.
Then, we propose a novel and efficient algorithm to compute
smooth sensitivity, with time complexity of O(m ·dmax +n2) In
addition, to handle large graphs, we propose a computationally
efficient function that could calculate a smooth upper bound on
local sensitivity, with a reduced time complexity of O(m·dmax).
Furthermore, we propose a degree-based pruning technique to
further reduce the computational cost and memory consump-
tion for the computation of smooth upper bound. The final step
is to release the triangle counts after adding Laplace noise.

In the local model, we propose a two-phase framework tai-
lored for balanced and unbalanced triangle counting. The first
phase uses the Generalized Randomized Response mechanism
to perturb the data. Then, in the second phase, we propose a
novel response mechanism with an unbiased correction to the
final statistics. This mechanism injects noise into the query
response of each node, which is also calibrated to the smooth
upper bound on local sensitivity. At the end, to evaluate the
effectiveness of our proposed methods, we conduct extensive
experiments on six real-world datasets. The results show that
the proposed approaches establish state-of-the-art performance
and achieve a superior privacy-utility trade-off. To summarize,
the main contributions of this paper are as follows:
• We propose innovative approaches to estimate balanced and

unbalanced triangle counts under centralized and local DP.
To the best of our knowledge, this is the first exploration of
privacy-preserving triangle counting in signed graphs.

• In the centralized model, we propose an efficient approach
for smooth sensitivity computation. To handle large signed

+

Balanced Triangles

- +

-

Unbalanced Triangles

-

-

++

+ +

- -

Fig. 2: Examples of balanced and unbalanced triangles.

graphs, we derive a smooth upper bound on local sensi-
tivity for triangle counting queries, which is computation-
ally more efficient and reduces the time complexity from
O(m·dmax+n2) to O(m·dmax). We also propose a degree-based
pruning technique to further reduce the computational cost
and memory usage for smooth upper bound computation.

• In the local model, we propose a two-phase framework for
triangle counting. We also derive a smooth upper bound on
local sensitivity for the user side and propose a response
mechanism to report the statistics in the second phase.

• We conduct extensive experiments across several real-world
datasets. The experimental results show that our proposed
methods achieve excellent privacy-utility trade-offs in cen-
tralized and local models and exhibit efficient performance.

II. PRELIMINARIES

A. Problem Statement

Consider an undirected signed graph G = (V, E), where V =

{v1, . . . , vn} represents the set of n nodes and E comprises m

edges. Each edge in G carries a sign "+" or "-". An edge with
the sign "+" denotes a positive edge, whereas an edge with the
sign "-" represents a negative edge. The degree of vi is denoted
by di, and the maximum degree is denoted by dmax. Let G be the
collection of all possible signed graphs on n nodes. Any signed
graph G ∈ G can also be represented as a symmetric adjacency
matrix A, where aij = +1 indicates a positive edge, aij = −1
denotes a negative edge, and aij = 0 implies no edge between
nodes vi and vj . The adjacency vector ai, which corresponds
to the i-th row of A, captures the connectivity profile of vertex
vi with respect to all other vertices.

In this paper, we consider a query function f△: G → (T b, Tu)

that takes a signed graph G as input and outputs the number of
balanced and unbalanced triangles, represented as T b and Tu

respectively. Note that we assume the set of nodes V is public,
and hence the identities of the nodes are non-private. Similar
assumptions are widely utilized in previous research [11]–[13],
[20], [22]. Conversely, the edge set E and the signs of edges are
considered sensitive information. Our objective is to develop
algorithms that can accurately estimate the number of balanced
and unbalanced triangles while protecting individual privacy.

B. Differential Privacy for Signed Graphs

Differential privacy [8] has become the standard framework
for data release that provides robust privacy protection in the
presence of powerful and realistic adversaries. A randomized
algorithm satisfies differential privacy when the distributions
of its outputs are similar for any pair of neighboring databases.
Therefore, the formal definition of differential privacy revolves
around the concept of neighboring databases. In this paper, we
utilize the edit distance to measure the distinction between two

2095

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 08,2025 at 15:28:12 UTC from IEEE Xplore. Restrictions apply.

databases. The edit distance quantifies the minimum number
of operations required to transform one object into another. We
exclusively focus on edge operations, since the graph structure
and edge signs are considered private information.
Centralized Differential Privacy. In the centralized model, a
trusted curator first collects the private data from all users and
then releases the sanitized statistical data.

Definition 1 (Distance between signed graphs, Neighbors).
The distance between n-node signed graphs G and ~

G, denoted
as d(G,

~
G), is the minimum number of primitive operations

required to convert G to ~
G. There are three types of primitive

edit operations: (1) edge insertion to introduce a new signed
edge between a pair of nodes; (2) edge deletion to remove a
single edge between a pair of nodes; (3) edge substitution to
alter the sign of a given edge. Signed graphs G and ~

G are
considered neighbors if d(G,

~
G) = 1.

Definition 2 (Signed Edge Centrialized Differential Privacy).
Given ϵ > 0 and δ > 0, a randomized algorithm A satisfies
(ϵ, δ)-signed edge CDP if and only if for any two neighboring
signed graphs G,

~
G ∈ G, and for any possible output O ∈

Range(A), we have Pr[A(G) = O] ≤ eϵ · Pr[A(~
G) = O] + δ.

The parameter ϵ is called the privacy budget that controls the
trade-off between privacy protection level and utility. A lower
privacy budget indicates stronger privacy protection but poorer
utility. The parameter δ is treated as the probability of failure
and is usually chosen to be much smaller than the inverse of
the number of data records. When δ = 0, the algorithm satisfies
ϵ-signed edge centralized differential privacy.
Local Differential Privacy. In contrast to centralized DP, local
differential privacy [23] is predicated on a local model wherein
the data curator is not trusted. In this model, each user applies
a randomized perturbation algorithm locally to his or her data
and then sends the perturbed data to the untrusted data curator.

Definition 3 (Distance between adjacency vectors, Neighbors).
The distance between two adjacency vectors ai,

~ai, denoted
as d(ai, ãi), is defined as the least number of elementary
operations required to transform ai into ~ai. These operations
include (1) the insertion of a signed edge connected to vi; (2)
the removal of an edge from node vi; (3) the alteration of the
sign of an edge linked to vi. Adjacency vectors ai and ~ai are
neighbors when d(ai,

~ai) = 1.

Definition 4 (Signed Edge Local Differential Privacy). Given
ϵ > 0 and δ > 0, a randomized algorithm A satisfies (ϵ, δ)-
signed edge LDP if and only if for any two neighboring
adjacency vectors ai and ~ai, and for any possible output O

of A, we have Pr[A(ai) = O] ≤ eϵ · Pr[A(~ai) = O] + δ.

C. Differential Privacy Mechanisms

Numerous approaches have been proposed to achieve differ-
ential privacy. One prevalent approach is to introduce carefully
calibrated random noise to the actual results. In this article,
we employ the Laplace distribution to add noise. A Laplace
random variable with mean 0 and standard deviation

√
2λ has

density h(z) = 1
2λ

e−|z|/λ, expressed as Lap(λ). The Laplace
mechanism [8], a fundamental technique that satisfies ϵ-DP,
introduces independent and identically distributed noise from
Lap(GSf/ϵ) to each element of the output produced by a query
function f : D → Rk, where GSf is the global sensitivity of f .

Definition 5 (Global Sensitivity [8]). Given a query function
f: D → Rk, the global sensitivity of f is defined as GSf =

maxx,~x∈D:d(x,~x)=1 ||f(x)− f(~x)||1, where || · ||1 is the ℓ1 norm.

The amount of noise added by the Laplace mechanism de-
pends on GSf and the privacy budget ϵ. It is crucial to note that
GSf is an inherent characteristic of the function f , independent
of any input data. However, for the query functions considered
in this article, this mechanism introduces a substantial amount
of noise to the results, which can compromise the performance.
In [11], the authors propose a local measure of sensitivity.

Definition 6 (Local Sensitivity [11]). The local sensitivity of
a function f: D → Rk on a database x ∈ D can be expressed
as LSf (x) = max~x∈D:d(x,~x)=1 ||f(x)− f(~x)||1.

It is evident that the local sensitivity depends not only on
the query function f , but also on the concrete instance. For
many problems, LSf (x) tends to be smaller than GSf [11],
[12], [14], [24]. Unfortunately, local sensitivity does not satisfy
the requirement of differential privacy, because LSf (x) itself
contains information about the database. To solve this problem,
Nissim et al. [11] employ a β-smooth upper bound on local
sensitivity, rather than the local sensitivity itself, for the noise
calibration. Specifically, for β > 0, a function Sf,β: D → R is
a β-smooth upper bound on local sensitivity of f , if ∀x ∈ D,
Sf,β(x) ≥ LSf (x) and ∀x, ~x ∈ D with d(x, ~x) = 1, Sf,β(x) ≤
eβSf,β(~x). LSf (x) may have multiple smooth bounds, and the
smooth sensitivity is the smallest one that meets the condition.

Definition 7 (Smooth Sensitivity [11]). For any query function
f: D → Rk and β > 0, the β-smooth sensitivity of f at x ∈ D
is defined as S∗

f,β(x) = max~x∈D(e−βd(x,~x) · LSf (
~x)).

To calculate the smooth sensitivity efficiently, we introduce
a function referred to as the local sensitivity at distance t,
denoted as LSf (x, t). This function is calculated as LSf (x, t) =

maxx̃∈D:d(x,x̃)≤t LSf (x̃). Here, LSf (x, t) is the maximum local
sensitivity LSf (~x) of all databases ~x where the maximum dis-
tance between ~x and x is t. In other words, we permit at most t
modifications to the database x before computing its local sen-
sitivity. Then the β-smooth sensitivity S∗

f,β(x) can be expressed
in terms of LSf (x, t) as S∗

f,β(x) = maxt∈[0,n] e
−βtLSf (x, t).

Theorem 1 (Noise Calibration to Smooth Bound [11]). Given
a query function f: D → Rk, suppose Sf,β(x) is a β-smooth
upper bound on local sensitivity of f , where β = ϵ

4(k+ln(2/δ))
.

Then the algorithm Af,ϵ(x) = f(x)+(z1, . . . , zk) satisfies (ϵ, δ)-
DP, where the zi are drawn i.i.d. from Lap(2Sf,β(x)/ϵ).

Generalized Randomized Response (GRR) [25] is another
perturbation mechanism that satisfies ϵ-LDP. This mechanism
returns the true value x with probability eϵ

eϵ+k−1
, or the value

~x ̸= x with probability 1
eϵ+k−1

, where k is the domain size.

2096

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 08,2025 at 15:28:12 UTC from IEEE Xplore. Restrictions apply.

III. THE PROPOSED CENTRALIZED DP METHOD

In this section, we propose novel approaches to estimate the
number of balanced and unbalanced triangles in signed graphs
under centralized DP. Our methods not only protect individual
privacy but also maintain excellent query performance. First
of all, we introduce techniques to compute the local sensitivity
and the local sensitivity at distance t for the triangle counting
query function, which is the foundation for the implementation
of differential privacy. Then, we propose efficient algorithms
for the calculation of smooth upper bounds on local sensitivity,
a critical factor in reducing the impact of data perturbations.
Among these bounds, smooth sensitivity is the smallest upper
bound. However, its calculation becomes impractical for large
signed graphs due to the enormous computational overhead. In
such cases, we select a computationally feasible smooth upper
bound as an alternative to smooth sensitivity. Thus, we devise
a computationally efficient function that calculates the smooth
upper bound on local sensitivity for triangle counting. Finally,
we add noise proportional to the smooth upper bound on local
sensitivity into the response of the triangle counting query. For
small signed graphs, the approach based on smooth sensitivity
provides superior utility than that based on the smooth upper
bound on local sensitivity. In contrast, for large signed graphs,
the method based on the smooth upper bound not only ensures
computational efficiency, but also achieves comparable utility
to the smooth-sensitivity-based approach.

A. The Calculation of Local Sensitivity

This section elucidates the approaches employed to compute
the local sensitivity and the local sensitivity at distance t of
the function f△. This function takes a signed graph G as input
and outputs the number of balanced and unbalanced triangles.

Local Sensitivity. The local sensitivity of the triangle counting
query function f△, denoted as LS△(G), is defined as follows:

LS△(G) = max~
G∈G:d(G,

~
G)≤1

| ~T b − T b|+ | ~Tu − Tu|. (1)

To efficiently compute the local sensitivity, we introduce a
specialized definition of local sensitivity, denoted as LSij(G).
This metric evaluates the maximum impact on sensitivity when
modifying the relationship between node vi and node vj . Such
modifications require the addition of a signed edge (vi, vj) in
its absence, or the alteration of its sign or deletion of a signed
edge if it exists. Let w+

ij denote the number of positive wedges
(two-hop paths) between nodes vi and vj where aik · ajk = 1.
In contrast, w−ij is the number of negative wedges where this
product is −1. The following lemma details the calculation of
the local sensitivity of f△. Due to space constraints, all proofs
of the subsequent lemmas and theorems can be found in [26].

Lemma 1. The local sensitivity of f△ is given by LS△(G) =

max1≤i<j≤n LSij(G), where

LSij(G) =

{
w+

ij + w−ij , if aij = 0,

max(w+
ij+w−ij , 2|w+

ij−w−ij |), if aij ̸= 0.
(2)

Algorithm 1 describes the process of computing the number
of wedges between all pairs of nodes. It iterates over each node

Algorithm 1: EDGE-SCAN FOR WEDGE COUNTING

Input: signed graph G represented as {a1, . . . ,an}
Output: {(w+

ij , w
−
ij)}1≤i<j≤n

1 Initialize w+
ij ← 0, w−ij ← 0 for each node pair (vi, vj);

2 for each node vi ∈ V do
3 for each pair of edges (vi, vj), (vi, vk) incident to vi do

/* suppose j < k */
4 if aij · aik = 1 then w+

jk ← w+
jk + 1;

5 else w−
jk ← w−

jk + 1;

6 return {(w+
ij , w

−
ij)}1≤i<j≤n

vi ∈ V and then enumerates all edge pairs connected to vi to
determine the number of positive and negative wedges between
specific node pairs. Since the signed graphs are undirected, it
follows that w+

ij = w+
ji and w−ij = w−ji. Therefore, it is sufficient

to compute the number of wedges for the node pairs vi and vj
whose node indexes satisfy i < j. Let Γ represent the number
of node pairs where w+

ij ̸= 0 or w−ij ̸= 0. The time complexity
of Algorithm 1 is O(m·dmax). The calculation of LS△(G) can
be accomplished in time O(Γ).

Example 1. The local sensitivity of the f△ query for the signed
graph in Figure 1(a) is 4. This value is achieved by flipping the
sign of edge (v1, v3) to the graph, i.e., LS△(G) = LS13(G) = 4,
where w+

13 = 2 and w−13 = 0.

Local Sensitivity at Distance. In the rest of this section, we
explain the computation of the local sensitivity at distance t of
f△, denoted as LS△(G, t). For the special scenario where t =

0, LS△(G, t) represents the local sensitivity of f△ at G. When
s ≥ 1, in order to compute LS△(G, t), we define LSij(G, t) as
the maximum value of LSij(·) achieved on signed graphs at a
distance of at most t from G, expressed as

LSij(G, t) = max~
G∈G:d(G,

~
G≤t)

LSij(
~
G). (3)

Therefore, LS△(G, t) = max1≤i<j≤n LSij(G, t). As shown in
Lemma 1, the calculation of local sensitivity for ~

G over the
node pair (vi, vj) depends on whether ~aij is equal to 0 or not.
Nonetheless, we can first introduce a signed edge (vi, vj) if it is
absent. Then, irrespective of the existence of edge (vi, vj), we
must explore modification strategies that maximize ~w+

ij +
~w−
ij

and 2| ~w+
ij− ~w−

ij | in
~
G, respectively. For clarity, we introduce the

notation: ws
ij denotes w+

ij +w−ij , wd
ij represents |w+

ij −w−ij |, and
wm

ij indicates min(w+
ij , w

−
ij). Moreover, we define W s

ij(G, t) as
the maximum of ~ws

ij , and W d
ij(G, t) as the maximum of 2 ~wd

ij .
To comprehend W s

ij(G, t) for positive t, we modify t edges
in G to construct a signed graph ~

G that maximizes ~ws
ij . Among

all possible modifications, only the addition of edges adjacent
to nodes vi or vj can increase ws

ij , where the sign of the added
edge is irrelevant. Hence, ~

G is obtained by adding t edges to
G. The specific allocation strategy is outlined in Lines 5-6 of
Algorithm 2. Let bij denote the number of nodes connected to
exactly one of vi and vj . For such nodes vk, adding one edge,
either (vi, vk) or (vj , vk), can increase ws

ij by 1. For nodes vk
connected to neither, it is required to add two edges to achieve
the same increment. Therefore, if t ≤ bij , the increase in ws

ij is
at most t, as specified in Line 5. However, a nuanced allocation

2097

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 08,2025 at 15:28:12 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: LOCAL SENSITIVITY AT DISTANCE

Input: signed graph G represented as {a1, . . . ,an},
distance t ≥ 1, {(w+

ij , w
−
ij)}1≤i<j≤n

Output: local sensitivity at distance t: LS△(G, t)
1 Initialize modification volume c← t, LS△(G, t)← 0;
2 for each node pair (vi, vj), where 1 ≤ i < j ≤ n do

// ws
ij := w+

ij+w−
ij , w

d
ij := |w+

ij−w−
ij |, w

m
ij := min(w+

ij , w
−
ij)

3 t← c;
4 bij ← di + dj − 2

(
ws

ij + |aij |
)
;

5 if bij ≥ t then W s
ij(G, t)← ws

ij + t;
6 else W s

ij(G, t)← ws
ij + ⌊(t+ bij)/2⌋;

7 if aij = 0 then t← t− 1;
8 if wm

ij ≥ t then W d
ij(G, t)← 2

(
wd

ij + 2t
)
;

9 else
10 W d

ij(G, t)← 2
(
wd

ij + 2wm
ij

)
;

11 t← t− wm
ij ;

12 if bij ≥ t then W d
ij(G, t)←W d

ij(G, t) + 2t;
13 else W d

ij(G, t)←W d
ij(G, t) + 2⌊(t+ bij)/2⌋;

14 LSij(G, t)← max
(
W s

ij(G, t),W d
ij(G, t)

)
;

15 LS△(G, t)← max (LS△(G, t), LSij(G, t));
16 return LS△(G, t)

approach is necessary when t > bij .
First, we add bij edges to increase ws

ij by bij . For the rest of
t−bij modifications, we can find ⌊(t− bij)/2⌋ nodes vk where
aik = ajk = 0 and add edges (vi, vk) and (vj , vk) to increase
ws

ij by ⌊(t− bij)/2⌋. This results in a total increase of ws
ij by

⌊(t+ bij)/2⌋, as shown in Line 6. Note that the upper bound
of ws

ij is n− 2. Next, we present the calculation of W d
ij(G, t).

Recall that W d
ij(G, t) is computed only if aij ̸= 0. However,

if aij = 0, we can first introduce an edge (vi, vj). As a result,
the total number of required modifications is reduced to t− 1.

Different from W s
ij(G, t), W d

ij(G, t) represents the maximum
of 2 ~wd

ij across all signed graphs ~
G where d(G,

~
G) ≤ t. Thus,

our modifications to G should aim to maximize 2wd
ij . The only

effective modification is to operate on edges adjacent to nodes
vi or vj . To be specific, the addition or deletion of an edge can
result in a maximum increase of 2, whereas the alteration of
the sign of an edge yields an increase of up to 4. In this paper,
we adopt a greedy strategy to calculate W d

ij(G, t), as stated in
Lines 8-13. The approach prioritizes edge sign alterations until
no further modifications yield increments anymore.

For distinct nodes vi and vj , two scenarios must be consid-
ered due to the absolute value: either w+

ij ≥ w−ij or w+
ij < w−ij .

The analysis for both cases is consistent. For simplicity, we
assume w+

ij ≥ w−ij , which reduces the objective function to
2(w+

ij −w−ij). If t ≤ w−ij , it is possible to increase the objective
by 4t via flipping the sign of t edges, as stated in Line 8, where
each edge belongs to a negative wedge. For the situation where
t > w−ij , we can first reverse the sign of w−ij edges to increase
2(w+

ij − w−ij) by 4w−ij . Then, the only feasible modification to
further increase 2(w+

ij−w−ij) is to add edges connected to either
nodes vi or vj . Therefore, for the rest of t−w−ij modifications,
the procedure is similar to that utilized in the calculation of
W s

ij(G, t), where the difference is that the increment is double.
Different from ws

ij , the upper bound of 2(w+
ij −w−ij) is 2n− 4.

Once W s
ij(G, t) and W d

ij(G, t) are computed, the local sensi-
tivity at distance t for the node pair (vi, vj) can be determined.

This procedure is applied iteratively to all pairs of nodes to
compute LS△(G, t), with a time complexity of O(n2).

Example 2. Figure 1(b) demonstrates the local sensitivity at
distance t = 1 for the signed graph in Figure 1(a). Specifically,
we first introduce the dashed negative edge (v1, v4) to obtain ~

G,
where ~w+

13 = 3 and ~w−13 = 0. Then, the local sensitivity of ~
G is

6, which means that LS△(G, 1) = LS△(
~
G) = 6. Furthermore,

we observe that LS△(G, t) does not exceed 6 for any t ≥ 1.

B. Smooth Upper Bound on Local Sensitivity

The previous subsection details the calculation of the local
sensitivity and the local sensitivity at distance t of the triangle
count query function. Next, we present methods that are used
to compute the smooth upper bound on local sensitivity.

Smooth Sensitivity. Smooth sensitivity is the smallest upper
bound that satisfies the criterion for a smooth upper bound
on local sensitivity. Thus, the mechanism that utilizes smooth
sensitivity to calibrate noise can add less noise. For β > 0, the
smooth sensitivity, denoted as S∗

△,β(G), is expressed as
S∗
△,β(G) = max

t∈[0,2n−3]
e−βtLS△(G, t). (4)

Given that LS△(G, t) remains constant for all t ≥ 2n − 3, it
is sufficient to consider t ≤ 2n − 3. To compute the smooth
sensitivity, one can calculate e−βtLS△(G, t) for each relevant t
and select the maximal value as the smooth sensitivity of f△.
However, the time complexity of LS△(G, t), denoted by O(n2),
coupled with the need to evaluate each possible value of t,
raises the overall time complexity to O(n3). This complexity
makes the method impractical for most applications.

In the calculation of smooth sensitivity, the primary source
of time complexity is the computation of local sensitivity at
distance, which involves extensive redundant and unproductive
calculations. To address this problem, we propose an efficient
method to compute the smooth sensitivity of f△. This method
eliminates duplicate and irrelevant data based on our estab-
lished criteria and retains only those elements that are critical
to the smooth sensitivity computation. Then, we can determine
the local sensitivity at every distance t sequentially, thereby
substantially reducing computational overhead.

First of all, we prepare the requisite data for the computation
of smooth sensitivity, as described in Lines 3-8 of Algorithm 3.
For each node pair where i < j, we compute w+

ij , w−ij and bij .
The values w+

ij and w−ij are computed by Algorithm 1, and bij
is determined by bij = di + dj − 2(ws

ij + |aij |). For node pairs
where ws

ij ̸= 0, we construct a list Q that is composed of the
triples (w+

ij , w
−
ij , bij). For node pairs where ws

ij = 0, we select
the maximum of bij and add (0, 0, bij) to the list Q.

To compute local sensitivity at distance efficiently, we pro-
pose a set of rules to eliminate duplicate and irrelevant triplets
in Q. Recall that the computation of the local sensitivity at
distance t primarily considers two scenarios: the maximum of
~w+
ij+

~w−
ij and the maximum of 2| ~w+

ij− ~w−
ij |. Let W s(G, t) be the

maximum of ~w+
ij +

~w−
ij across all ~

G which satisfy d(G,
~
G) ≤ t,

and we define W d(G, t) as the maximal value of 2| ~w+
ij − ~w−

ij |
within the same subset of ~

G. Thus, it follows that W s(G, t) =

2098

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 08,2025 at 15:28:12 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: SMOOTH SENSITIVITY CALCULATION

Input: signed graph G denoted as {a1,. . . ,an}, parameter β
Output: smooth sensitivity S∗

△,β(G)
1 Initialize S∗

△,β ← 0, bmax ← 0, Q ← ∅;
2 Lc ← ∅, tc0 ← 0 for c ∈ [1, 4];
3 Construct {(w+

ij , w
−
ij)}1≤i<j≤n via Algorithm 1;

4 for each node pair (vi, vj), where 1 ≤ i < j ≤ n do
// ws

ij := w+
ij+w−

ij , w
d
ij := |w+

ij−w−
ij |, w

m
ij := min(w+

ij , w
−
ij)

5 bij ← di + dj − 2
(
ws

ij + |aij |
)
;

6 if ws
ij ̸= 0 then Q.push

(
(w+

ij , w
−
ij , bij)

)
;

7 else bmax ← max(bmax, bij);
8 Q.push ((0, 0, bmax));
9 L1 ← CalcList

(
Q, ws

ij , bij , Eq.7
)
;

10 L2 ← CalcList
(
Q, wd

ij , w
m
ij , Eq.9

)
;

11 L3 ← CalcList
(
Q, wd

ij , 3w
m
ij + bij , Eq.11

)
;

12 L4 ← CalcList
(
Q, wd

ij + wm
ij , w

m
ij + bij ,Eq.13

)
;

13 Calculate tci for c ∈ [1, 4] by (8), (10), (12), and (14);
14 for t = 0 to 2n− 3 do
15 Select (w+

i , w
−
i , bi) from L1 where t ∈

[
t1i−1, t

1
i

)
;

16 W s(G, t)← ws
i + ⌊(t+min(bi, t)) /2⌋;

17 Select (w+
i,c, w

−
i,c, bi,c) from other Lc where t∈ [tci−1,t

c
i);

18 W d(G, t)←
maxc 2(w

d
i,c+min(wm

i,c,t)+⌊(t+min(t, wm
i,c+bi,c))/2⌋);

19 LS△(G, t)← max(W s(G, t),W d(G, t));
20 S∗

△,β(G)← max(S∗
△,β(G), e−βtLS△(G, t));

21 return S∗
△,β(G)

22 Function CalcList(Q, sortKey, tieKey, conditionFn)
23 Qc ← sort Q by sortKey, resolve ties with tieKey;
24 for i = 1 to |Qc| do
25 if conditionFn (Qc[i],Qc[i− 1]) then
26 Lc.push (Qc[i])

27 return Lc

max1≤i<j≤n W s
ij(G, t), W d(G, t) = max1≤i<j≤n W d

ij(G, t), and
LS△(G, t) = max(W s(G, t),W d(G, t)). Note that we do not
consider whether aij = 0 or not when computing LS△(G, t). In
the cases where aij = 0, the required number of modifications
decreases from t to t−1. However, our algorithm still executes
t modifications to G, which does not compromise privacy, as
LS△(G, t) is a monotonically non-decreasing function of t. In
accordance with Algorithm 2, W s

ij(G, t) can be formulated as

W s
ij(G, t) =

{
ws

ij + t, if t ≤ bij ,

ws
ij + ⌊(t+ bij)/2⌋, if t > bij ,

(5)

and W d
ij(G, t) can be expressed as

W d
ij(G, t)=


2wd

ij+4t, if t ≤ wm
ij ,

2wd
ij+2wm

ij +2t, if wm
ij < t ≤ wm

ij + bij ,

2(wd
ij+wm

ij +⌊(t+wm
ij +bij)/2⌋), otherwise.

(6)

To compute W s(G, t), we first sort the Γ+1 pairs (ws
ij , bij)

in a non-increasing order by ws
ij , represented as Q1. If multiple

pairs share the same ws
ij , only the pair with the maximum of

bij is retained. Then, we process Q1 in the order of descending
ws

ij . The pair (ws
i , bi) is maintained only if it, relative to the

previously retained pair (ws
i−1, bi−1), satisfies the condition:

2(ws
i−1 − ws

i) + bi−1 < bi. (7)
The set of pairs that meet this condition is represented as L1 =

{(ws
1, b1), . . . , (w

s
k1
, bk1)}. Equally pivotal in our analysis is the

determination of breakpoints, utilized to select the appropriate

data from the filtered list to compute W s(G, t) or W d(G, t). In
what follows, we set the initial breakpoint as 0 and the final
breakpoint as 2n−3. In the computation of W s(G, t), the other
breakpoints are set to

t1i = 2(ws
i − ws

i+1) + bi, i ∈ [k1 − 1]. (8)
Then, W s(G, t) can be computed by the formulas W s(G, t) =

ws
i + ⌊(t+min(bi, t))/2⌋ if t ∈ [t1i−1, t

1
i).

The calculation of W d(G, t) is more complicated, primarily
because the independent variable t must be compared with two
different quantities: wm

ij and wm
ij +bij . To address this problem,

we maintain three different lists. First of all, we sort the Γ+1

triplets (wd
ij , w

m
ij , bij) in a non-increasing order based on two

criteria: wd
ij and wd

ij + wm
ij . For the first criterion, if multiple

triplets exhibit identical wd
ij values, we retain only the triplet

with the largest wm
ij . This list is represented as Q2. In addition,

we also utilize the first criterion to construct Q3 but retain the
triplet with the largest 3wm

ij + bij in case of same wd
ij values.

Similarly, for the second criterion, if multiple triplets have the
same value of wd

ij + wm
ij , we keep the triplet with the largest

wm
ij + bij , and this list is denoted as Q4.
Then, we respectively process the sorted lists Q2, Q3, and

Q4. The first treatment involves a traversal of the list Q2 in the
order of decreasing wd

ij . Each triplet (wd
i , w

m
i , bi) is evaluated

for retention based on the following condition:
wd

i−1 − wd
i + wm

i−1 < wm
i , (9)

where (wd
i−1, w

m
i−1, bi−1) is the previous retained triplet. The

collection of triplets that satisfy this criterion is represented
as L2 = {(wd

1 , w
m
1 , b1), . . . , (w

d
k2
, wm

k2
, bk2)}. The breakpoints

are calculated via the formula:
t2i = wd

i − wd
i+1 + wm

i , i ∈ [k2 − 1]. (10)

Go through the list Q3 in the order of decreasing wd
ij . Each

triplet (wd
i , w

m
i , bi) is retained only if it satisfies the condition
2(wd

i−1 − wd
i) + 3wm

i−1 + bi−1 < 3wm
i . (11)

These triplets form L3 = {(wd
1 , w

m
1 , b1),. . . ,(w

d
k3
, wm

k3
, bk3)}. To

determine the breakpoints for L3, we set each breakpoint as:
t3i = (2(wd

i − wd
i+1) + 3wm

i + bi)/3, i ∈ [k3 − 1]. (12)

For the sorted triplet list Q4, we first traverse this list in the
order of decreasing wd

ij +wm
ij . For each triplet, keep it only if

it satisfies the following criterion:
2(wd

i−1 − wd
i) + 3wm

i−1 − 3wm
i + bi−1 < bi (13)

Sequentially, the set of triplets that fulfill this condition consti-
tutes L4 = {(wd

1 , w
m
1 , b1),. . . ,(w

d
k4
, wm

k4
, bk4)}. The breakpoints

for L4 are determined by the formula:
t4i = 2(wd

i − wd
i+1) + 3wm

i − 2wm
i+1 + bi, i ∈ [k4 − 1]. (14)

To complete the calculation of W d(G, t), it is imperative to
choose the relevant triplets from the three filtered lists. Given
a specific distance t, similar to the computation of W s(G, t),
we choose three triplets from L2, L3, and L4, respectively,
based on the comparison of t with their respective breakpoint
sequences, represented as (wd

i,c, w
m
i,c, bi,c), where c ∈ {2, 3, 4}.

Then, W d(G, t) can be calculated by the equation: W d(G, t) =

maxc 2w
d
i,c + 2min(wm

i,c, t) + 2⌊(t+min(t, wm
i,c + bi,c))/2⌋.

2099

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 08,2025 at 15:28:12 UTC from IEEE Xplore. Restrictions apply.

+ + +

+ +
+

-

-

-

+

Fig. 3: Examples of the smooth sensitivity calculation.

In order to compute the smooth sensitivity of the function
f△, we sequentially compute e−βtLS△(G, t) for each distance
t, where LS△(G, t) =max(W s(G, t),W d(G, t)), and select the
maximum as the smooth sensitivity. This calculation is detailed
in the pseudo-code presented in Algorithm 3.

Example 3. Figure 3 illustrates the calculation of the smooth
sensitivity for a signed graph G with n = 7 nodes. Specifically,
we first prepare the data Q needed to compute SS, and then
filter out irrelevant elements to derive the lists L1, L2, L3,
and L4, which enhance the efficiency of the smooth sensitivity
calculation. Subsequently, we can iterate through the elements
in these lists to sequentially calculate LS at each distance, and
finally determine the smooth sensitivity SS of the function f△.

Furthermore, we have established a theorem that delineates
an explicit condition under which the maximal value of W s(G)

and W d(G) is equal to the smooth sensitivity, where W s(G) =

max1≤i<j≤n ws
ij , and W d(G) = max1≤i<j≤n 2wd

ij . Under this
condition, our randomized algorithm A introduces noise that
is proportional to max(W s(G),W d(G)), without the necessity
to calculate the local sensitivity at distance t.

Theorem 2. Given a signed graph G, if W s(G) ≥ 1
β

and
W d(G) ≥ 4

β
, then S∗

△,β(G) = max(W s(G),W d(G)).

The time complexity of smooth sensitivity computation is
analyzed methodically over several phases. In the data prepara-
tion phases, the time complexity is described as O(m·dmax+n2).
This complexity comes from the O(m·dmax) time required to
compute w+

ij and w−ij , and the time required to calculate bij ,
quantified as O(n2). In the phase dedicated to the elimination
of duplicate and irrelevant data, the time complexity remains at
O(Γ), as both the creation of sorted lists by Bucket Sort and the
construction of filtered lists are achievable within O(Γ). The
computation of smooth sensitivity in the final phase requires
O(n) time. Hence, the overall time complexity of our proposed
method is established as O(m·dmax+n2).

Smooth Upper Bound. For large signed graphs, computing
the smooth sensitivity of the triangle count query is non-trivial
due to the excessive time complexity. To address this problem,
we relax the requirements for smooth sensitivity computation
and instead construct a computationally efficient function that
provides a smooth upper bound on local sensitivity. Given an
arbitrary database x and a query function f , LSf has multiple
smooth bounds, and the proposition below provides a approach
to determine the smooth upper bounds on local sensitivity.

Proposition 1. [11] Define Sf,β(x) = maxt∈[0,n] e
−βtU(x, t),

where U(x, t) satisfies LSf (x) ≤ U(x, 0) for all x and U(x, t) ≤
U(~x, t+1) for all x, ~x such that d(x, ~x) = 1. Then Sf,β(x) is a

Algorithm 4: SMOOTH UPPER BOUND ON LS

Input: signed graph G denoted as {a1,. . . ,an}, parameter β
Output: smooth upper bound on local sensitivity S△,β(G)

1 W s(G)← 0; W d(G)← 0;
2 Construct {(w+

ij , w
−
ij)}1≤i<j≤n via Algorithm 1;

3 for each pair (w+
ij , w

−
ij), where w+

ij ̸= 0 or w−ij ̸= 0 do
4 W s(G)← max(W s(G), ws

ij);
5 W d(G)← max(W d(G), 2wd

ij);

6 t1 ← 1
β
−W s(G); t2 ← 1

β
−W d(G)/4;

7 if t1 ≤ 0 then S△,β(G)←W s(G);
8 else
9 S△,β(G)← e−β⌈t1⌉(W s(G) + ⌈t1⌉);

10 S△,β(G)← max(S△,β(G), e−β⌊t1⌋(W s(G) + ⌊t1⌋));
11 if t2 ≤ 0 then S△,β(G)← max(S△,β(G),W d(G));
12 else
13 S△,β(G)← max(S△,β(G), e−β⌈t2⌉(W d(G) + 4⌈t2⌉));
14 S△,β(G)← max(S△,β(G), e−β⌊t2⌋(W d(G) + 4⌊t2⌋));
15 return S△,β(G)

β-smooth upper bound on local sensitivity.

Inspired by Theorem 2, we develop a function that not only
meets the criteria for a smooth upper bound on LS△, but also
enhances computational efficiency.

Theorem 3. Define U(G, t) = max(Us(G, t), Ud(G, t)), where
Us(G, t) = W s(G) + t and Ud(G, t) = W d(G) + 4t. Then the
function S△,β(G) = maxt∈[0,2n−3] e

−βtU(G, t) is a β-smooth
upper bound on local sensitivity of f△.

Actually, it is feasible to compute S△,β(G) efficiently. The
function S△,β(G) can also be expressed as
S△,β(G)= max

t∈[0,2n−3]
{e−βt(W s(G)+t), e−βt(W d(G)+4t)}. (15)

It can be straightforwardly deduced that the peak values of the
functions h(t) = e−βt(W s(G)+t) and g(t) = e−βt(W d(G)+4t)

occur at t = 1
β
−W s(G) and t = 1

β
−W d(G)/4, respectively.

Given the discrete nature and bounded domain of t, the smooth
sensitivity S△,β(G) can be determined in constant time based
on the precomputed values of W s(G) and W d(G), as described
in Lines 6-14 of Algorithm 4. And W s(G) and W d(G) can be
computed in time O(m ·dmax). The process of the computation
of the smooth upper bound on LS is presented in Algorithm 4,
and the worst-case time complexity is O(m·dmax).

To compute the smooth upper bound on LS, it is necessary
to determine the maximum values of ws

ij and wd
ij for all i < j.

The method mentioned earlier is to first compute w+
ij and w−ij

for all node pairs, and then traverse these counts to determine
the maxima. However, it is infeasible to store all the statistics
in memory for extremely large graphs. An alternative approach
is to enumerate all node pairs and then compute these counts
on-the-fly from the intersection of two adjacent vectors. While
this reduces memory consumption, it incurs a time complexity
of O(mn). To solve this issue, we propose an efficient degree-
based pruning technique to reduce the number of node pairs
to be processed. The intuition behind this technique stems
from the fact that nodes with smaller degrees are unlikely to
contribute much to ws

ij and wd
ij , since the relationship between

the degrees and these values satisfies wd
ij ≤ ws

ij ≤ min(di, dj).

2100

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 08,2025 at 15:28:12 UTC from IEEE Xplore. Restrictions apply.

Algorithm 5: COMPUTE MAX WEDGE METRICS

Input: signed graph G represented as {a1, . . . ,an}
Output: maximum wedge metrics W s(G) and W d(G)

1 W s(G)← 0, W d(G)← 0;
2 S ← ∅;
3 sortedNodes← sort the nodes in descending order by di;
4 for each node vi ∈ sortedNodes do
5 if di ≤ min(W s(G),W d(G)/2) then
6 break;
7 for each node vj ∈ S do
8 w+

ij , w
−
ij ← INTERSECTIONCOUNTING(ai,aj);

9 W s(G)← max(W s(G), ws
ij);

10 W d(G)← max(W d(G), 2wd
ij);

11 S ← S ∪ {vi};
12 return W s(G),W d(G)

Algorithm 5 describes the computation of W s(G) and W d(G).
To be specific, we first sort the nodes in descending order by
their degrees, and traverse them in this order. Once the degree
of node vi is smaller than max(W s(G),W d(G)/2), the traversal
terminates, which enhances the computational efficiency.

The empirical results of the experiments demonstrate that
our proposed methods, based on the smooth upper bound on
LS, is more efficient than that based on the smooth sensitivity.
Moreover, the approach used to compute W s(G) and W d(G) in
Algorithm 5 outperforms the method described in Algorithm 4
in terms of both runtime and memory consumption.

Privacy Guarantee. The algorithms used to calculate smooth
upper bounds on LS△ can be employed in conjunction with
Theorem 1 to obtain efficient differentially private algorithms
for the estimation of balanced and unbalanced triangle counts.

Theorem 4. Given ϵ > 0 and δ > 0, let β = ϵ
8+4 ln(2/δ)

. The
randomized algorithm A(G) = f△(G) + (2S△,β(G)/ϵ) · Z sat-
isfies (ϵ, δ)-signed edge centralized differential privacy where
Z is sampled from 2-dimensional Laplace distribution.

IV. THE PROPOSED LOCAL DP METHOD

Local differential privacy has been extensively accepted and
adopted in academic research and industry applications due to
its robust framework for privacy preservation. Unlike central-
ized DP, LDP provides enhanced privacy protection since data
obfuscation is performed at the node level rather than by a data
curator. In this section, we explore the techniques employed to
compute the number of balanced and unbalanced triangles in a
signed graph under local DP. Inspired by the previous work of
Imola et al. [20], we propose a two-phase framework tailored
for balanced and unbalanced triangle counting. The first phase
uses Generalized Randomized Response mechanism to perturb
the adjacency vectors locally. In the second phase, we propose
an innovative perturbation mechanism. This mechanism injects
noise into the response of each node, where the added noise is
calibrated to the smooth upper bound. This two-phase method
achieves a better trade-off between data utility and privacy.

The Two-Phase Framework. In the local model, each node vi
independently maintains its own data, denoted as an adjacency

vector ai. This vector contains information about the connec-
tions of node vi and the signs of these connections. However,
when the query function is f△, nodes cannot locally calculate
and submit the obfuscated counts of balanced and unbalanced
triangles due to their limited insight into the complete graph
structure. Specifically, node vi is inherently unable to perceive
any triangle (vi, vj , vk), because it lacks information about the
existence of the edge (vj , vk) and its sign in the signed graph.

To address this issue, we propose a two-phase framework to
privately response to the query function f△. In the first phase,
each node vi ∈ V independently invokes the GRR mechanism
to perturb the entities aij in its adjacency vector (where i > j).
These elements represent the connections between node vi and
nodes with smaller IDs. Given the allocated privacy budget ϵ1,
the perturbation scheme of the GRR mechanism is as follows:

Pr[âij |aij] =

{
eϵ1

eϵ1+2
, if âij = aij ,

1
eϵ1+2

, if âij ̸= aij .
(16)

The data curator then collects the distorted data from all nodes
and constructs a noisy signed graph Ĝ, under the premise of an
undirected structure. In fact, the data curator can compute the
number of balanced and unbalanced triangles directly from Ĝ.
However, this estimation method infuses substantial noise into
the statistical query results since each edge and its associated
sign are modified with a certain probability. This indicates that
the state of any triangle in Ĝ is influenced by three independent
random variables. As a matter of fact, for any triangle which
involves a certain node, only one edge and its associated sign
are unknown to that node. If the data collector publishes the
noisy signed graph Ĝ, nodes can obtain information about the
edges they are unaware of from Ĝ. Therefore, we can introduce
an additional round of interaction between nodes and the data
collector to minimize noise injection.

In the second phase, each node vi computes the number of
noisy triangles formed by (vi, vj , vk) where the information of
the edge (vj , vk) can be obtained from Ĝ. Here, a noisy triangle
is classified as balanced if the product aij ·aik ·âjk equals 1, and
as unbalanced if it is −1. This approach ensures that only one
edge in each noisy triangle is obfuscated, which enhances the
overall utility, albeit at the cost of increased communication
overhead per node. However, the direct release of these noisy
triangle counts may lead to two major problems. The first issue
is the introduction of statistical bias into the estimates of these
triangle counts. This bias comes from the noise added during
the adjacency vector obfuscation process, which can skew the
final estimates. Secondly, and perhaps more importantly, direct
publication of such data potentially jeopardizes the privacy of
the edges and their respective signs in G. This concern stems
from the fact that each node still employs its real data when
it calculates balanced and unbalanced triangle counts.

To address the first issue, we employ an empirical estimation
technique [20], [21], [27] that yields an unbiased estimate of
f△(G) from these noisy statistics. Let T b

i and Tu
i be the counts

of balanced and unbalanced triangles with noise computed by
vi, where the IDs of the three nodes in each triangle satisfy
i > j > k. In addition, node vi is also required to calculate the

2101

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 08,2025 at 15:28:12 UTC from IEEE Xplore. Restrictions apply.

number of 2-stars centered on itself under the same constraints
of node IDs, denoted as si. The data curator then estimates the
number of balanced and unbalanced triangles in G, represented
as −

T b and −
Tu, based on the data collected from each node. Let

q = 1/(eϵ1 + 2), and the estimates can be formulated as:
−
T b =

1

1−3q

n∑
i=1

(T b
i −q · si),

−
Tu =

1

1−3q

n∑
i=1

(Tu
i −q · si). (17)

Lemma 2. The values −
T b and −

Tu as shown in Equation (17),
are unbiased estimates of the true counts of balanced and
unbalanced triangles in G, i.e., E[−

T b] = T b and E[−
Tu] = Tu.

To address the privacy concerns, each node needs to perturb
its computed statistics via an LDP mechanism and then sends
them to the data curator. A simple implementation is to utilize
the Laplace mechanism for the data perturbation. Nevertheless,
this approach is less practical due to the high global sensitivity,
quantified as 2(n−2). To address this problem, Imola et al. [20]
employ graph projection to reduce sensitivity. This approach
removes some neighbors from the adjacency vector so that the
maximum degree dmax is bounded by a predetermined threshold
d̂max. As a result, the global sensitivity is reduced to 2(d̂max−1).
However, there are two main limitations of this approach. The
first limitation is that the determination of the threshold d̂max

requires an additional privacy budget. In addition, since real-
world graphs obey power-law degree distributions [3], [22], the
direct addition of Laplace noise calibrated to 2(d̂max−1) would
substantially diminish the utility of the data. To alleviate these
limitations, we propose an innovative approach that employs a
smooth upper bound on local sensitivity to calibrate the noise.

Given the presence of empirical estimates, the release statis-
tics for each node vi are adjusted to (T b

i −qsi, T
u
i −qsi). Thus,

we need to devise a function that can efficiently calculate the
smooth upper bound on local sensitivity for such statistical
estimates. For node vi, the local sensitivity of these estimates
can be expressed as follows:

LS△(ai)= max
d(ai,

~ai)≤1
| ~T b

i −T b
i −q(~si−si)|+|

~
Tu
i −Tu

i −q(~si−si)|.

Let d′i represent the number of nodes that are connected to vi
and have smaller IDs than vi. A specific smooth upper bound
on local sensitivity is described in the subsequent theorem.

Theorem 5. For any node vi, let U(ai, t) = max(d′i + t, 2(d′i +

t − 1)). The function S△,β(ai) = maxt∈[0,i−1−d′i]
e−βtU(ai, t)

is a β-smooth upper bound on local sensitivity for node vi.

For the node vi, the smooth upper bound on local sensitivity,
denoted by S△,β(ai), can be expressed as
S△,β(ai) = max

t∈[0,i−1−d′i]
{e−βt(d′i + t), 2e−βt(d′i + t− 1)}. (18)

The computation of S△,β(ai) is similar to that of the smooth
upper bound on local sensitivity under the centralized DP. For
any number d′i, the maximum values of the functions h(t) =

e−βt(d′i+t) and g(t) = 2e−βt(d′i+t−1) are achieved at t = 1
β
−d′i

and t = 1
β
− d′i +1, respectively. Given the discrete constraints

and a specified interval for t, the smooth upper bound of node
vi, S△,β(ai), can be determined in constant time.

Algorithm 6: THE TWO-PHASE FRAMEWORK

Input: signed graph G represented as adjacency vectors
{a1, . . . ,an}, the privacy budget ϵ1, ϵ2, the
invalidation probability δ

Output: balanced and unbalanced triangle counts T̂ b, T̂u

1 Initialize q ← 1
eϵ1+2

, β ← ϵ2
8+4 ln(2/δ)

;
2 for each node vi ∈ V do
3 âi ← {GRRϵ1(aij)} where i > j;
4 Send the perturbed data âi to the server;

5 Collect noisy data {â1, . . . , ân} and construct Ĝ;
6 for each node vi ∈ V do
7 T b

i ← |{(vi, vj , vk) : i > j > k, aij · aik · âjk = 1}|;
8 Tu

i ← |{(vi, vj , vk) : i > j > k, aij · aik · âjk = −1}|;
9 si ← |{(vi, vj , vk) : i > j > k, aij · aik ̸= 0}|;

10 T̂ b
i ← (T b

i − q · si) + Lap(2S△,β(ai)/ϵ2);
11 T̂u

i ← (Tu
i − q · si) + Lap(2S△,β(ai)/ϵ2);

12 Send the perturbed data T̂ b
i , T̂

u
i to the server;

13 T̂ b ← 1
1−3q

∑n
i=1 T̂

b
i ; T̂u ← 1

1−3q

∑n
i=1 T̂

u
i ;

14 return T̂ b, T̂u

Algorithm 6 describes the overall protocol of our two-phase
framework. The algorithm takes as input a signed graph G, the
privacy budgets ϵ1 and ϵ2 for the first and second phases, and
an invalidation probability δ. In the first phase, each node vi
applies GRRϵ1 to the elements aij in his/her adjacency vector
ai, where the node IDs satisfy j < i. Then, node vi submits the
obfuscated data âi to the server. Finally, the server constructs
a noisy Ĝ based on the data collected from all nodes. In the
second phase, node vi first computes the statistics T b

i , Tu
i and

si under the condition where node IDs satisfy i > j > k. Then,
it adds the noise Lap(2S△,β(ai)/ϵ2) to T b

i − qsi and Tu
i − qsi

and reports the perturbed statistics T̂ b
i and T̂u

i to the untrusted
server. Finally, the server releases the estimates T̂ b and T̂u. In
this framework, the primary computational cost is on the client
side. For each node vi, the perturbation takes O(n) time, while
the computation of T b

i and Tu
i takes O(d2i) time. On the server

side, it takes O(n) time to collect the perturbed statistics.

Theorem 6. Algorithm 6 satisfies (ϵ1+ϵ2, δ)-signed edge LDP.
Remark. In this paper, we assume node identities are public
and protect the privacy of edges and their signs, a widely used
assumption [11]–[13], [20]. This assumption is reasonable and
applicable to real-world applications, such as social networks,
where user identities are public, but connections and their signs
are private, and financial networks, where bank identities are
public, but transactions and their statuses are private. However,
in scenarios like healthcare networks, where node identities are
also private, a new privacy model is needed, such as node DP,
which protects each node and its adjacent edges. It provides a
stronger guarantee than edge DP but requires more noise. We
leave the exploration of node DP for future work.

V. EXPERIMENTS

A. Experimental Setup

Datasets. Our experiments make use of six real-world datasets.
Key statistics are summarized in Table I, with details provided
in [26]. Wiki-vote, epinions, and wikisigned are signed graphs.

2102

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 08,2025 at 15:28:12 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Dataset Statistics

Dataset |V| |E| T b Tu

wiki-vote (WV) 7,115 100,693 458,597 148,682
epinions (EP) 131,580 711,210 4,368,206 541,870

wikisigned (WS) 138,587 715,883 2,659,365 318,661
youtube (YT) 1,134,890 2,987,624 1,626,212 1,430,174
pokec (PK) 1,632,803 30,622,564 17,321,674 15,235,784

dbpedia (DB) 18,268,991 126,890,209 174,860,389 153,883,022

The datasets youtube, pokec, and dbpedia are used to evaluate
the scalability of our proposed approaches. In accordance with
the procedures stated in [3], we randomly allocate 70% of the
edges as positive and the remainder as negative.

Competitors and Parameter Selection. To the best of our
knowledge, we are the first to study the problem of privacy-
preserving triangle counting in signed graphs. Since there is no
previous research on the subject, we present baseline methods
and evaluate our proposed approaches on six datasets.

In the centralized model, our proposed approaches introduce
Laplace noise into the query response, and the difference lies
in the noise scale. The approach that calibrates the noise based
on the smooth sensitivity is represented as CentralSS, while the
one that calibrates the noise based on the smooth upper bound
on local sensitivity is referred to as CentralSU. Furthermore,
we implement a baseline approach, CentralGS, which injects
Laplace noise proportional to the global sensitivity into the
response. To provide a fair comparison, the baseline approach
releases true counts with a probability of δ, and the perturbed
counts otherwise. All approaches satisfy (ϵ, δ)-CDP, which has
similar semantics to ϵ-CDP when 1/δ is at least the number of
possible edges in the signed graph [12]. In our experiments, δ
is set as 1/(10

(
n
2

)
), where n denotes the number of nodes.

In the local model, our proposed two-phase framework is
called as LocalTwoSU. To evaluate the performance of our
method, we compare it with two other approaches: LocalOne
and LocalTwoGS. LocalOne estimates the statistical counts
from Ĝ. LocalTwoGS, similar to LocalTwoSU, operates within
a two-phase framework. Nevertheless, the distinction arises in
the second phase, where LocalTwoGS utilizes graph projection
to diminish global sensitivity. Subsequently, each node reports
the true counts with a probability of δ and, alternatively, pro-
vides the counts distorted by Laplace noise in other instances.
Note that LocalOne satisfies ϵ-local DP, while LocalTwoGS
and LocalTwoSU satisfy (ϵ, δ)-local DP. For parameter selec-
tion, we set ϵ1 = 0.5ϵ and ϵ2 = 0.5ϵ for the first phase and
second phase, respectively. For the invalidation probability δ,
we set δ to 1

10n
, where n represents the total number of nodes.

Evaluation Metric. We assess the performance of all methods
by the Relative Error (RE) [18], [20], [21], which is defined as
|T̂ b−T b|+|T̂u−Tu|

T b+Tu . To ensure statistical reliability, each experi-
ment is replicated 100 times, with the mean outcomes reported.
All methods are implemented in C++ and executed on a server
with an AMD Ryzen 3995WX CPU and 256GB RAM.

B. Experimental Results

Centralized Model. In the first set of experiments, we evaluate
the performance of various methods as the privacy cost ϵ varies

between 0.05 and 0.5. The relative errors for each mechanism
are presented in Figure 4. Our proposed approaches, CentralSS
and CentralSU, achieve superior accuracy across all datasets.
For ϵ = 0.5, their relative errors are maintained below or close
to 1%. As ϵ decreases, the accuracy declines, but the errors stay
below 15% even at ϵ = 0.05, except the smaller dataset wiki-
vote. Our methods consistently outperform the benchmark due
to lower noise injection and the improvement is remarkable. In
addition, CentralSS performs better on smaller datasets and at
lower ϵ values, while CentralSU is comparable in other cases.
For example, in the wiki-vote dataset, CentralSS yield better
accuracy than CentralSU when ϵ ≤ 0.25. This is because the
smooth sensitivity is optimal over all smooth bounds, whereas
the noise added in CentralSU relies on the smooth upper bound
on LS, whose stationary point is subject to the joint effect of ϵ,
W s(G), and W d(G). When these factors take on small values,
it could exceed the smooth sensitivity. Note that for extremely
large datasets, such as dbpedia, these two methods cannot run
on machines with 256GB RAM due to their extreme memory
consumption. By contrast, our proposed approach, CentralSU⋆,
employs pruning techniques and can easily handle data of this
scale. The only difference between CentralSU and CentralSU⋆

is the computation of W s(G) and W d(G), which ensures that
CentralSU⋆ also achieves competitive accuracy.

In the second set of experiments, we evaluate the influence
of the number of nodes n on the relative error and runtime. We
randomly sample 20%-80% nodes from the full dataset to con-
struct four small data. Figure 5 summarizes the performance
of CentralSS and CentralSU at ϵ = 0.1. Similarly, for dbpedia
dataset, we only report the results of CentralSU⋆ due to the
memory limitation. For smaller datasets, such as the ratio of
sampled nodes ≤ 60%, CentralSS achieves better performance
than CentralSU on all datasets. As n increases, the execution
time of both methods increases, but CentralSU remains within
a relatively acceptable runtime. For example, in the full pokec
dataset, the runtime of CentralSU is about 180 seconds, while
CentralSS takes about 104 seconds time. For dbpedia dataset,
CentralSU⋆ also achieves competitive accuracy and runtime.
Hence, we conclude that the smooth sensitivity-based method
is preferable for smaller datasets, while the method based on
smooth upper bound on LS is better suited for larger datasets.

In Table II, we compare the runtime and memory consump-
tion of methods CentralSU and CentralSU⋆ across all datasets,
except dbpedia. The results show that CentralSU⋆ considerably
reduces memory consumption and runtime. In youtube dataset,
for example, CentralSU⋆ consumes about 0.12 GB of memory
and costs about one second to run, compared to 17.66 GB and
84 seconds for CentralSU. This confirms the effectiveness of
pruning techniques in terms of memory and runtime reduction.

In addition, we randomly sample 20%-80% edges from the
youtube dataset to assess the impact of sparsity on scalability.
Figure 6(a) shows that the execution time of CentralSS and
CentralSU⋆ are relatively stable across sparsity levels, because
the time cost of CentralSS is dominated by O(n2) and sparsity
does not influence the relative distribution of node degrees. In
contrast, the runtime of CentralSU decreases with increased

2103

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 08,2025 at 15:28:12 UTC from IEEE Xplore. Restrictions apply.

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.0 0.1 0.2 0.3 0.4 0.5

R
E

ε

CentralGS

CentralSS

CentralSU

(a) wiki-vote

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.0 0.1 0.2 0.3 0.4 0.5

R
E

ε

CentralGS

CentralSS

CentralSU

(b) epinions

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.0 0.1 0.2 0.3 0.4 0.5

R
E

ε

CentralGS

CentralSS

CentralSU

(c) wikisigned

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.0 0.1 0.2 0.3 0.4 0.5

R
E

ε

CentralGS

CentralSS

CentralSU

(d) youtube

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.0 0.1 0.2 0.3 0.4 0.5

R
E

ε

CentralGS

CentralSS

CentralSU

(e) pokec

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.0 0.1 0.2 0.3 0.4 0.5

R
E

ε

CentralGS CentralSU
★

(f) dbpedia

Fig. 4: Trade-offs between privacy and relative error of various mechanisms under centralized DP.

10
-3

10
-2

10
-1

10
0

10
1

20 40 60 80 100
10

-3

10
-2

10
-1

10
0

10
1

10
2

R
E

T
im

e
 (

s
e
c
)

Sampled Node Proportion (%)

CentralSS RE

CentralSU RE

CentralSS Time

CentralSU Time

(a) wiki-vote

10
-3

10
-2

10
-1

10
0

10
1

20 40 60 80 100
10

-2

10
-1

10
0

10
1

10
2

10
3

R
E

T
im

e
 (

s
e
c
)

Sampled Node Proportion (%)

CentralSS RE

CentralSU RE

CentralSS Time

CentralSU Time

(b) epinions

10
-3

10
-2

10
-1

10
0

10
1

20 40 60 80 100
10

-2

10
-1

10
0

10
1

10
2

10
3

R
E

T
im

e
 (

s
e
c
)

Sampled Node Proportion (%)

CentralSS RE

CentralSU RE

CentralSS Time

CentralSU Time

(c) wikisigned

10
-3

10
-2

10
-1

10
0

10
1

20 40 60 80 100
10

-1

10
0

10
1

10
2

10
3

10
4

R
E

T
im

e
 (

s
e
c
)

Sampled Node Proportion (%)

CentralSS RE

CentralSU RE

CentralSS Time

CentralSU Time

(d) youtube

10
-3

10
-2

10
-1

10
0

10
1

20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

10
5

R
E

T
im

e
 (

s
e
c
)

Sampled Node Proportion (%)

CentralSS RE

CentralSU RE

CentralSS Time

CentralSU Time

(e) pokec

10
-3

10
-2

10
-1

10
0

10
1

20 40 60 80 100
10

0

10
1

10
2

10
3

R
E

T
im

e
 (

s
e
c
)

Sampled Node Proportion (%)

CentralSU
★

 RE CentralSU
★

 Time

(f) dbpedia

Fig. 5: Relative errors and runtime for CentralSS vs. CentralSU (CentralSU⋆) at different sampling node ratios (ϵ = 0.1).

TABLE II: Comparison of memory consumption (GB) and
runtime (seconds) between CentralSU and CentralSU⋆.

Metric Method WV EP WS YT PK

Memory CentralSU 0.06 1.20 2.27 17.66 22.60
CentralSU⋆ 0.01 0.02 0.03 0.12 0.55

Runtime CentralSU 0.45 12.09 14.88 83.74 175.51
CentralSU⋆ 0.03 0.26 0.16 1.04 9.10

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

20 40 60 80 100

T
im

e
 (

s
e
c
)

Sampled Edge Proportion (%)

CentralSS CentralSU CentralSU
★

(a) youtube

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

1 2 3 4 5

T
im

e
 (

s
e
c
)

n (× 10
5
)

CentralSS CentralSU CentralSU
★

(b) Barabási-Albert

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

1 2 3 4 5

T
im

e
 (

s
e
c
)

n (× 10
5
)

CentralSS CentralSU CentralSU
★

(c) Erdős-Rényi
Fig. 6: Comparison of CentralSS, CentralSU and CentralSU⋆

runtimes for different sparsity levels and degree distributions.

sparsity, since its time complexity depends on both the number
of edges and the maximum degree. We further evaluate perfor-
mance on synthetic graphs with different degree distributions.
As shown in Figure 6(b) and (c), CentralSU significantly out-
performs other methods. In addition, CentralSS and CentralSU
exhibit stable runtimes across degree distributions. Conversely,
CentralSU⋆ is more sensitive to the degree distribution, with
a noticeable preference for power-law distributed graphs.

Local Model. To evaluate the effectiveness of LocalTwoSU,
we compare it with LocalOne and LocalTwoGS. We vary the
privacy cost from 1.0 to 5.0, with results illustrated in Figure 7.
Note that LocalOne is only tested on the wiki-vote dataset, the
smallest dataset in our study, since its O(n3) time complexity
makes it impractical for other datasets [20], [22]. In summary,
LocalTwoSU consistently outperforms all competitors on all
datasets. While LocalOne satisfies a stricter privacy notion, it
injects too much noise, which reduces the estimation accuracy.

Figure 8 presents the execution time of LocalTwoSU on
the wiki-vote and youtube datasets under different sampled
node ratios. The primary computational cost arises from the
GRR perturbation mechanism and local counting at the node
side, with negligible server-side time. The runtime of GRR

and local computation both increases with the sampled node
ratio. On small datasets, the difference between GRR and local
computation is minimal, but on large datasets, the runtime of
GRR substantially exceeds that of local computation, which is
consistent with the theoretical analysis of the time complexity.

Then, we evaluate the influence of empirical estimation on
relative error. Figure 9 illustrates the comparative performance
of LocalTwoSU versus the approach without empirical estima-
tion across various privacy cost. It is evident that LocalTwoSU
clearly outperforms the method w/o empirical estimation in all
cases, which indicates that the unbiased correction does reduce
the estimation error.
Case Studies. To show the effectiveness of our methods with
respect to privacy preservation and to provide useful statistics,
we conduct case studies on datasets extracted from wiki-RfA
and bitcoin social networks. Figure 10(a) illustrates the rela-
tionships of seven nodes in the wiki-RfA dataset, where nodes
represent Wikipedia members and edges represent votes. The
signs of edges indicate the support or opposition of the votes.
For example, if “Cyde” knows the relationships between other
five members, he could deduce the specific votes of “Comput-
erjoe”, (Computerjoe,Alphax,−), (Computerjoe, JoshuaZ,−),
and (Computerjoe,Matt Yeager,+), which violates the privacy
of “Computerjoe”. This inference is based on the analysis of
T b = 7 and Tu = 5. Our proposed mechanisms, with privacy
cost ϵ = 3.5, output estimated counts 7.50 and 5.77, which are
close to the actual counts and prevent such privacy breaches.
For the bitcoin dataset, a who-trusts-whom network, similarly,
member “bigbitz” can infer the trust relationships of “csm” by
the accurate counts 8 and 3, combined with the knowledge of
the relationships between other network members. To address
privacy concerns, our methods obfuscates these counts to 8.65

and 4.62, which enhances the privacy protection of “csm”.

VI. RELATED WORK

Graph Analysis under DP. Centralized DP mechanisms are
predicated on the existence of a trusted curator. A substantial
portion of graph analysis studies under centralized DP focuses
on the estimation of graph statistics. [11] pioneers the concept

2104

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 08,2025 at 15:28:12 UTC from IEEE Xplore. Restrictions apply.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

1.0 2.0 3.0 4.0 5.0

R
E

ε

LocalOne

LocalTwoGS

LocalTwoSU

(a) wiki-vote

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

1.0 2.0 3.0 4.0 5.0

R
E

ε

LocalTwoGS LocalTwoSU

(b) epinions

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

1.0 2.0 3.0 4.0 5.0

R
E

ε

LocalTwoGS LocalTwoSU

(c) wikisigned

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

1.0 2.0 3.0 4.0 5.0

R
E

ε

LocalTwoGS LocalTwoSU

(d) youtube

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

1.0 2.0 3.0 4.0 5.0

R
E

ε

LocalTwoGS LocalTwoSU

(e) pokec

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

1.0 2.0 3.0 4.0 5.0

R
E

ε

LocalTwoGS LocalTwoSU

(f) dbpedia
Fig. 7: Trade-offs between privacy and relative error of distinct mechanisms under local DP.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

20 40 60 80 100

T
im

e
 (

s
e
c
)

Sampled Node Proportion (%)

GRR Local Counting

(a) wiki-vote

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

20 40 60 80 100

T
im

e
 (

s
e
c
)

Sampled Node Proportion (%)

GRR Local Counting

(b) youtube
Fig. 8: Runtime of Generalized Randomized Response and
local counting in LocalTwoSU.

10
-2

10
-1

10
0

10
1

10
2

1.0 2.0 3.0 4.0 5.0

R
E

ε

LocalTwoSU (biased)

LocalTwoSU (unbiased)

(a) wiki-vote

10
-2

10
-1

10
0

10
1

10
2

1.0 2.0 3.0 4.0 5.0

R
E

ε

LocalTwoSU (biased)

LocalTwoSU (unbiased)

(b) youtube
Fig. 9: Relative error comparison between biased and unbiased
LocalTwoSU under local DP.

Alphax Computerjoe

Matt

Yeager

JoshuaZMONGO

Cyde

MJCdetroit

(a) wiki-RfA

csm

magicaltux

bigbitz

resperanto

cylta

iwilcox

rrichard

qwertyoruiop

(b) bitcoin

Fig. 10: Case studies on datasets exacted from wiki-RfA and
bitcoin, where black lines represent positive relationships and
red lines indicate negative relationships.

of smooth sensitivity and applies it to estimate the costs of
minimum spanning trees and triangle counts. This method has
been extended to other subgraph count queries, such as k-stars
and k-triangles [12]. [13] proposes ladder functions to provide
empirical improvements with efficient time complexities. Be-
sides, techniques are developed for other problems [14]–[16].

Apart from graph statistics, researchers have also developed
various methods to address other graph-related problems under
centralized DP. Some research have explored the problem of
releasing specific node subsets, such as the vertex cover [28]
and densest subgraphs [29], [30]. Another research direction is
the construction of private synthetic graphs [31], [32]. Despite
these advancements, there is still an absence of discussion in
the literature on the estimation of the number of balanced and
unbalanced triangles in signed graphs under centralized DP.

Graph Analysis under LDP. Local DP assumes that the data
curator is not trusted. [17] proposes a multi-phase framework
for graph generation. [19] introduces the LF-GDPR framework
to estimate various graph metrics. The problem of subgraph
counting under LDP has attracted attention in research [18],

[20]–[22], [33], [34]. [18] estimates the number of subgraphs
under the assumption that each user permits his/her friends to
view all his/her relationships, but this requirement does not
work in many practical scenarios. To address this inadequacy,
[34] proposes an enhanced privacy protection scheme named
Edge Relationship LDP and develops a federated estimator
for triangle counting. [33] applies the randomized response
mechanism to the adjacency matrix. However, this perturbation
approach introduces a substantial bias to the estimation. [20]
estimates the number of k-stars and triangles by multiple
rounds of interactions to reduce estimation errors and em-
ploys edge sampling techniques to improve communication
efficiency [21]. However, none of the current LDP methods are
specifically tailored to privately release the number of balanced
and unbalanced triangles for signed graphs.

Signed Graph Analysis. The origins of signed graph analysis
can be traced back to the realm of social psychology, and the
structural balance theory is first presented in [35]. Subsequent
research has explored diverse applications such as link predic-
tion [1], [36], [37], balancedness analysis [5], [9], community
detection [4], [10], [38], and cohesive subgraph mining [3],
[6], [39]. More recently, Arya et al. [7] introduce an efficient
algorithm to estimate the number of balanced and unbalanced
triangles. Despite these advances, the direct release of graph
statistics continues to pose risks to individual privacy, an issue
our research endeavors to address.

VII. CONCLUSION

In this paper, we propose a series of algorithms designed for
counting balanced and unbalanced triangles under centralized
and local differential privacy, respectively. In the centralized
model, our smooth-sensitivity-based method establishes a new
benchmark for effectiveness. Meanwhile, our differentially pri-
vate solution based on smooth upper bound on local sensitivity
not only demonstrates its superior efficiency but also provides
reliable estimations for most signed graphs. In the local model,
our proposed response mechanism introduces less noise to the
true results, enhancing data utility. As future work, we intend
to extend these methods to count more complex subgraphs in
signed networks, such as cliques and 4-cycles.

ACKNOWLEDGMENT

This research is supported by the NSFC Grant U2241211
and the Guangdong Provincial Ordinary Universities’ Special
Innovation Program (2024KTSCX260). We sincerely thank
Prof. Xiaokui Xiao for his insightful and valuable comments.
Rong-Hua Li is the corresponding author of this paper.

2105

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 08,2025 at 15:28:12 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive and
negative links in online social networks,” in WWW, 2010, pp. 641–650.

[2] J. Tang, C. Aggarwal, and H. Liu, “Recommendations in signed social
networks,” in WWW, 2016, pp. 31–40.

[3] R.-H. Li, Q. Dai, L. Qin, G. Wang, X. Xiao, J. X. Yu, and S. Qiao,
“Signed clique search in signed networks: concepts and algorithms,”
TKDE, vol. 33, no. 2, pp. 710–727, 2019.

[4] R. Sun, C. Chen, X. Wang, Y. Zhang, and X. Wang, “Stable community
detection in signed social networks,” TKDE, vol. 34, no. 10, pp. 5051–
5055, 2020.

[5] P. K. Pandey, B. Adhikari, M. Mazumdar, and N. Ganguly, “Modeling
signed networks as 2-layer growing networks,” TKDE, vol. 34, no. 7,
pp. 3377–3390, 2020.

[6] R. Sun, C. Chen, X. Wang, W. Zhang, Y. Zhang, and X. Lin, “Efficient
maximum signed biclique identification,” in ICDE, 2023, pp. 1313–
1325.

[7] A. Arya, P. K. Pandey, and A. Saxena, “Balanced and unbalanced
triangle count in signed networks,” TKDE, vol. 35, no. 12, pp. 12 491–
12 496, 2023.

[8] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in TCC, 2006, pp. 265–284.

[9] T. Derr, C. Aggarwal, and J. Tang, “Signed network modeling based on
structural balance theory,” in CIKM, 2018, pp. 557–566.

[10] Y. Kang, W. Lee, Y.-C. Lee, K. Han, and S.-W. Kim, “Adversarial
learning of balanced triangles for accurate community detection on
signed networks,” in ICDM, 2021, pp. 1150–1155.

[11] K. Nissim, S. Raskhodnikova, and A. Smith, “Smooth sensitivity and
sampling in private data analysis,” in STOC, 2007, pp. 75–84.

[12] V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev, “Private
analysis of graph structure,” TODS, vol. 39, no. 3, pp. 1–33, 2014.

[13] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao,
“Private release of graph statistics using ladder functions,” in SIGMOD,
2015, pp. 731–745.

[14] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. Smith,
“Analyzing graphs with node differential privacy,” in TCC, 2013, pp.
457–476.

[15] W.-Y. Day, N. Li, and M. Lyu, “Publishing graph degree distribution
with node differential privacy,” in SIGMOD, 2016, pp. 123–138.

[16] X. Ding, S. Sheng, H. Zhou, X. Zhang, Z. Bao, P. Zhou, and H. Jin,
“Differentially private triangle counting in large graphs,” TKDE, 2021.

[17] Z. Qin, T. Yu, Y. Yang, I. Khalil, X. Xiao, and K. Ren, “Generating
synthetic decentralized social graphs with local differential privacy,” in
CCS, 2017, pp. 425–438.

[18] H. Sun, X. Xiao, I. Khalil, Y. Yang, Z. Qin, H. Wang, and T. Yu, “Ana-
lyzing subgraph statistics from extended local views with decentralized
differential privacy,” in CCS, 2019, pp. 703–717.

[19] Q. Ye, H. Hu, M. H. Au, X. Meng, and X. Xiao, “Lf-gdpr: A framework
for estimating graph metrics with local differential privacy,” TKDE,
vol. 34, no. 10, pp. 4905–4920, 2020.

[20] J. Imola, T. Murakami, and K. Chaudhuri, “Locally differentially private
analysis of graph statistics,” in USENIX Security, 2021, pp. 983–1000.

[21] J. Imola, T. Murakami, and K. Chaudhuri, “Communication-efficient
triangle counting under local differential privacy,” in USENIX Security,
2022, pp. 537–554.

[22] J. Imola, T. Murakami, and K. Chaudhuri, “Differentially private triangle
and 4-cycle counting in the shuffle model,” in CCS, 2022, pp. 1505–
1519.

[23] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Local privacy and
statistical minimax rates,” in FOCS, 2013, pp. 429–438.

[24] V. A. Farias, F. T. Brito, C. Flynn, J. C. Machado, S. Majumdar, and
D. Srivastava, “Local dampening: Differential privacy for non-numeric
queries via local sensitivity,” The VLDB Journal, pp. 1–24, 2023.

[25] P. Kairouz, S. Oh, and P. Viswanath, “Extremal mechanisms for local
differential privacy,” NeurIPS, vol. 27, 2014.

[26] Z. Li, R.-H. Li, F. Jin, and G. Wang, “Privacy-preserving triangle
counting in signed graphs,” 2024. [Online]. Available: https://github.
com/Zening-Li/TC-SG/blob/main/FullVersion.pdf

[27] T. Wang, J. Blocki, N. Li, and S. Jha, “Locally differentially private
protocols for frequency estimation,” in USENIX Security, 2017, pp. 729–
745.

[28] A. Gupta, K. Ligett, F. McSherry, A. Roth, and K. Talwar, “Differentially
private combinatorial optimization,” in SODA, 2010, pp. 1106–1125.

[29] D. Nguyen and A. Vullikanti, “Differentially private densest subgraph
detection,” in ICML, 2021, pp. 8140–8151.

[30] L. Dhulipala, Q. C. Liu, S. Raskhodnikova, J. Shi, J. Shun, and S. Yu,
“Differential privacy from locally adjustable graph algorithms: k-core
decomposition, low out-degree ordering, and densest subgraphs,” in
FOCS, 2022, pp. 754–765.

[31] Q. Xiao, R. Chen, and K.-L. Tan, “Differentially private network data
release via structural inference,” in KDD, 2014, pp. 911–920.

[32] Z. Jorgensen, T. Yu, and G. Cormode, “Publishing attributed social
graphs with formal privacy guarantees,” in SIGMOD, 2016, pp. 107–
122.

[33] Q. Ye, H. Hu, M. H. Au, X. Meng, and X. Xiao, “Towards locally
differentially private generic graph metric estimation,” in ICDE, 2020,
pp. 1922–1925.

[34] Y. Liu, T. Wang, Y. Liu, H. Chen, and C. Li, “Edge-protected triangle
count estimation under relationship local differential privacy,” IEEE
Transactions on Knowledge and Data Engineering, 2024.

[35] D. Cartwright and F. Harary, “Structural balance: a generalization of
heider’s theory.” Psychological review, vol. 63, no. 5, p. 277, 1956.

[36] J. Ye, H. Cheng, Z. Zhu, and M. Chen, “Predicting positive and negative
links in signed social networks by transfer learning,” in WWW, 2013,
pp. 1477–1488.

[37] X. Li, H. Fang, and J. Zhang, “Rethinking the link prediction problem
in signed social networks,” in AAAI, vol. 31, no. 1, 2017.

[38] J. Zhao, R. Sun, Q. Zhu, X. Wang, and C. Chen, “Community identifi-
cation in signed networks: a k-truss based model,” in CIKM, 2020, pp.
2321–2324.

[39] R. Sun, Q. Zhu, C. Chen, X. Wang, Y. Zhang, and X. Wang, “Discov-
ering cliques in signed networks based on balance theory,” in DASFAA.
Springer, 2020, pp. 666–674.

2106

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 08,2025 at 15:28:12 UTC from IEEE Xplore. Restrictions apply.

